Jarrell Waggoner^1 / @malloc47 / waggonej@email.sc.edu,
Youjie Zhou^1,
Jeff Simmons^2,
Ayman Salem^3,
Marc De Graef^4,
Song Wang^1
^1USC, ^2AFOSR, ^3MRi, ^4CMU
U | : Source image that is segmented |
V | : Target image that is not segmented |
S^U, S^V | : Segmentation of U or V respectivesly |
In our previous work, this was
done by using an energy of the form
\begin{equation}
E( S^V ) = \sum_{p\in V}\Theta_p(S^V_i) +
\sum_{\{p,q\}\in\mathcal{P}^V_n} \Phi_{pq}(S_i^V , S_j^V)
\end{equation}
which can be minimized by the min-cut max-flow graph cut algorithm
\begin{equation} \Theta_p(S^{V}_i) = \left\{ \begin{array}{lcr} 0, & \textrm{distance}(p,S^U_i) < d \\ \infty, & \textrm{ otherwise} \\ \end{array} \right. \end{equation}
\begin{equation} \Phi_{pq}(S^V_i , S^V_j) = \left\{ \begin{array}{lcr} 0, & i = j \\ \infty, & \{ S^U_i, S^U_j \} \notin \mathcal{A}^U \\ g( p, q ), & \{ S^U_i, S^U_j \} \in \mathcal{A}^U \\ \end{array} \right. , \end{equation}
Incorporate human interaction into the segmentation task to
Do this with minimal interaction, producing an updated segmentation \tilde{S}^V_i
We require only a single annotation (click) identifying a particular segment S^V_k to be removed, which is done in two steps:
Identify local region for removal \mathcal{L} = \{\mathcal{A}^V\}_k \bigcup S^V_k where \{\mathcal{A}^V\}_k is all the segments adjacent to the segment to be removed
Update the unary term to allow S^V_k to be
reassigned to its neighbors:
\begin{equation}
\begin{aligned}
\forall p \in S^V_k ,& \quad \Theta_p(\tilde{S}^V_i) = \left\{
\begin{array}{lcr}
0, & S^V_i \in \{\mathcal{A}^V\}_k \\
\infty, & \textrm{ otherwise} \\
\end{array}
\right. \\
\forall p \notin S^V_k ,& \quad \Theta_p(\tilde{S}^V_i) = \Theta_p(S^V_i)
\end{aligned}
\end{equation}
Require three inputs:
\mathcal{L} \gets union of all segments that contain a seed pixel or dilation pixel
\begin{equation} \Theta_p(\tilde{S}^V_{n+1}) = \left\{ \begin{array}{lcr} 0, & \| p - c \| \leq d \\ \infty, & \textrm{ otherwise} \\ \end{array} \right. \end{equation} \begin{equation} \Theta_p(\tilde{S}^V_i) = \left\{ \begin{array}{lcr} \infty, & \| p - c \| \leq s \textrm{ and } i \neq n+1 \\ \Theta_p(S^{V}_i), & \textrm{ otherwise.} \\ \end{array} \right. \end{equation}